Upcoming Meetings and Events

The next Ohio IX Board of Directors meeting is scheduled to occur on October 14 2022 at 9:00am and will be held at Cologix. Details will be sent to the Board of Directors. Any member who would like to attend should contact us for call in details.

September 2022 Meeting Minutes

September 16 2022 OhioIX Meeting

Attendees:  Nancy Tiemeier, Luke Skidmore, Doug Payauys, Brent Beatty, Jason Gintert, Rob Shema, Kim Gerhart, Chris Cameron, Brian Riley, Matt Moran, Marijan Adam and Greg Dunn

Associate & Senior Member Applications – King Networks – They are a WISP in Detroit.  They connect to the data center in Troy, OH and want to be a direct switch operator in the future.  Voted and passed

Content Committee

  • Working with Google to determine in peering presence makes sense
    • No update on FaceBook
    • Limelight – will reach out this month
    • Ultimate in Indiana – they are looking for connectivity
    • Cache Fly – Doug provided information


  • We need a new chair- will reach out to some members to see if there is an interest
  • Happy Hours – Chris Tovar reached out to some places in Cleveland, probably off of 77 and not downtown.  In Cincinnati, looking at Municipal BrewWorks in Hamilton (Aaron Holts has ownership in this.
  • Possible dates – October 13th in Cleveland and October 19th in Cincinnati
  • Chris C discussed doing a tailgate for OSU game.  Could piggyback off of tailgate that he has
  • Membership drive – combine with happy hours

Tech Committee / CTO Report

  • Traffic averaging 50 to 60 Gbps.  Peaked at 75Gbps with Thursday night football for Thursday night football.
  • Upgraded last route server.  It is all integrated and members can see all routes
  • IFN has upgraded to 100 G port
  • CISP is peering
  • DSW is now connected
  • FirstComm is getting turned up
  • Port capacity – 10G port is about 30% and 100G has 15% utilization

Old / New Business

  • Financial needs – Now that are getting bigger, need automation and someone to handle invoicing etc.  Payments should be ACH.  Will look into possible companies that we could hire to help
  • Broadband Ohio – Had a call with Peter and Patrick.  They are working with Middle Mile funding.  Provided cost for equipment and transport.  Would like to work with the existing Ohio Network.  We need letters of support and need to work quickly to get them.  Letters from people in the community, political aspects, underserved areas (Athens and Apalachia).  We need a template letter to provide to get a quicker response.  Dustin from Fairlawn Gig would like a letter from us and he would provide one to us.
  • Could look to BlueBridge as another Remote Switch Operator
  • We had the following Motion – The Ohio IX will engage Integrated Concept Network Concepts for Veeam backup and licensing that are critical to the operations of the Ohio IX and must support them financially for services rendered.  This was moved, seconded and passed.
  • The next meeting will be Friday, October 14, at Cologix at 9:00

OhioIX Topology

Describe OhioIX network topology, highlight connecting partners…

OhioIX Route Servers


AMS-IX Route Servers

AMS-IX offers networks connected to the Peering LAN the opportunity to peer via its route servers. On our route servers, peers can filter based on IRRDB objects, as well as on predefined BGP communities. Therefore, members/customers can peer with the route servers while maintaining their own peering policy.


Normally, you would need to maintain separate BGP sessions to each of your peers’ routers. With a route server you can replace all or a subset of these sessions with one session towards each route server.

The goal of AMS-IX’s Route Server Project is to facilitate the implementation of peering arrangements. We aim to lower the barrier of entry for new participants on the peering platform.

The route servers do not participate in the forwarding path, so they do not forward any traffic. And peering with a route server does not mean that you must accept routes from all other route server participants.

Why would you use the route servers?

  • Let’s make it easy
    Simplify the needed configuration to reach as many networks as possible on the AMS-IX platform by configuring just two BGP sessions. With the large amount of connected parties, it can be a full-time task to manage separate BGP sessions. In addition, whenever a new party connects to the route servers, you will be able to automatically exchange prefixes with it (depending on yours/their filters).
  • Manage only your most important peers, let the route server do the rest
    You probably want to exchange as much traffic as possible through the exchange, but setting up a peering takes time and effort. So only set up peering sessions with your most important peers – let the route server do the rest!
  • Send and receive routes from day one
    Once you are connected to the route servers you will start exchanging routes immediately. The route servers are a good way to get started on the exchange.
  • Use it as a backup
    When your BGP session to a party becomes inactive, there is a possibility that you can still connect to them via the route servers. So the use of the route servers can lead to a more stable platform.
  • Maintain your peering policy
    The route server has built in filters that allow you to maintain your peering policies. For more information, please read the filtering topic.

Route server details

Route Server 1Route Server 2
  • When peering with the route servers, it is mandatory that routers are set up to connect to both route servers and advertise the same amount and length of prefixes for resilience.
  • Please note that the route servers are set to passive mode and will never initiate a BGP session. You should make sure that your equipment does so, i.e. connects to our TCP port 179 and that your inbound filtering/ACL rules permit established sessions with the route servers.

Prefix propagation and Max-Prefix Advisory

The route servers hold around 255K IPv4 prefixes and 55K IPv6 prefixes in the master table. These prefixes are the best routes that Bird’s BGP algorithm has selected among all received routes from all the established BGP feeds. But the number of prefixes that each member receives from the route servers varies and depends of the following factors:

  • Your peering policy that is expressed in RPSL format in the IRR database.
  • The filtering mode that you selected and sanitizes the prefixes being announced to you (by default we apply the “default” mode to your BGP feed).
  • The peering policy of other AMS-IX members in which they can decide to announce prefixes via AMS-IX route servers to specific peers.

With the current peering policies and convergence of BGP algorithm, we observe that the average amount of prefixes being received by our members with “default” filtering option is around 100K for IPv4 and 19K for IPv6. However, we advise our members to configure a max-prefix of 320K for IPv4 and 80K for IPv6 due to the following reasons:

  • We calculate the limit based on the maximum number of valid prefixes that exist in the master table and can be potentially provided to a singe BGP feed.
  • AMS-IX expects future prefix growth as a result of a dynamic platform where more and more networks get connected. Thus, we raise the limit by 25% in order accommodate this growth.

We recommend using the AMS-IX Looking Glass (members only) for more up-to-date information about announced prefixes.

Want to participate?

Many unique ASNs participate in the route server project, representing tens of thousands of prefixes. For more information about who is participating, see the Connected Parties page.

If you would like to peer with the AMS-IX route servers, please login to our customer portal My.AMS-IX, and enable it in the configuration page of your respective connection (Connections -> Show -> Disable/Enable Peering with route-server).

Need support to enable peering with route server?


Manrs Rgb Vertical Logo Dark

AMS-IX Route Servers are MANRS (Mutually Agreed Norms for Routing Security) compliant.

> Read more

Deployment guidelines

Below follows a sample configuration for Cisco routers to announce a prefix to the route servers:

router bgp your-asn
 bgp always-compare-med
 no bgp enforce-first-as
 bgp log-neighbor-changes
 neighbor AMS-IX-RS peer-group
 neighbor AMS-IX-RS remote-as 6777
 neighbor AMS-IX-RS version 4
 neighbor AMS-IX-RS  transport connection-mode active
 neighbor AMS-IX-RS-6 peer-group
 neighbor AMS-IX-RS-6 remote-as 6777
 neighbor AMS-IX-RS-6 version 4
 neighbor AMS-IX-RS-6  transport connection-mode active
 neighbor peer-group AMS-IX-RS
 neighbor description rs1.ams-ix.net
 neighbor peer-group AMS-IX-RS
 neighbor description rs2.ams-ix.net
 neighbor 2001:7f8:1::a500:6777:1 peer-group AMS-IX-RS-6
 neighbor 2001:7f8:1::a500:6777:1 description rs1.ams-ix.net
 neighbor 2001:7f8:1::a500:6777:2 peer-group AMS-IX-RS-6
 neighbor 2001:7f8:1::a500:6777:2 description rs2.ams-ix.net
 address-family ipv4
 no neighbor AMS-IX-RS-6 activate
 neighbor AMS-IX-RS activate
 neighbor AMS-IX-RS next-hop-self
 neighbor AMS-IX-RS soft-reconfiguration inbound
 neighbor AMS-IX-RS route-map TO-RS out
 no auto-summary
 no synchronization
 neighbor peer-group AMS-IX-RS
 neighbor peer-group AMS-IX-RS
 network mask
 network mask
 network mask
 address-family ipv6
 neighbor AMS-IX-RS-6 activate
 neighbor AMS-IX-RS-6 next-hop-self
 neighbor AMS-IX-RS-6 soft-reconfiguration inbound
 neighbor AMS-IX-RS-6 route-map TO-RS out
 neighbor 2001:7f8:1::a500:6777:1 peer-group AMS-IX-RS-6
 neighbor 2001:7f8:1::a500:6777:2 peer-group AMS-IX-RS-6
 network 2001:DB8:10::/64
 network 2001:DB8:11::/64
 network 2001:DB8:12::/64
ip as-path access-list 12 permit ^$
ip prefix-list TO-RS seq 10 permit
ip prefix-list TO-RS seq 20 permit
ip prefix-list TO-RS seq 30 permit
ipv6 prefix-list TO-RS seq 10 permit 2001:DB8:10::/64
ipv6 prefix-list TO-RS seq 20 permit 2001:DB8:11::/64
ipv6 prefix-list TO-RS seq 30 permit 2001:DB8:12::/64
route-map TO-RS permit 10
 match ip address prefix-list TO-RS

Note that for recent IOS versions (e.g. 12.0(26)S and 12.2(25)S and up, where this has become the – hidden – default) you will have to specify “no bgp enforce-first-as (IOS, IOS-XE) / bgp enforce-first-as disable (IOS-XR)” as the route server does not insert its own ASN into the AS_path of relayed prefix announcements. Zebra and Quagga suffer from the same problem since somewhere in 0.91.

Below is a similar example for Juniper routers:

user@junix# show protocols bgp
group IPV4-RS {
    type external;
    description "Route Servers";
    family inet {
    export TO-RS;
    peer-as 6777;
    neighbor {
        description rs1.ams-ix.net;
    neighbor {
        description rs2.ams-ix.net;


user@junix# show policy-options policy-statement TO-RS term unicast-export { from { rib inet.0; prefix-list to-announce; } then accept; } term end { then reject; }


user@junix# show policy-options prefix-list to-announce;

Route Server Filtering

AMS-IX route server filtering.

Incoming prefixes sanitisation

All AMS-IX route servers in Amsterdam perform basic and extended prefix filtering to all member/customer BGP sessions that are being established (optionally) with our Route Servers. The basic prefix filtering consists of blocking RFC 1918 ranges, bogon and Martian prefixes and the default route. We base our list on Team CYMRU’s BOGON List.

Outgoing prefixes filtering among route-server members

The extended prefix filtering offers 3+1 peering modes and the customer is able to select the desired one through the my.ams-ix.net portal.

The AMS-IX route servers implement outgoing filtering based on policies defined by the route server participants. This filtering is applied on outgoing advertisements. By defining your policy using an IRRDB object described by RPSL, you instruct the route servers to send your prefixes to other participants (export policy), or from which participants you wish to receive prefixes (import policy). Therefore, connecting with the route servers does not necessarily mean that you would be obliged to send/receive prefixes for all connected participants; filtering schemes are available.

The filters are solely derived from your IRRDB objects, which use RPSL as a description language. There are three different options you can use: ANY, ANY EXCEPT and RESTRICTIVE, to define your filtering needs.

In order to pick up the change in member’s peering policy, AMS-IX route-servers periodically detect policy changes every hour starting at midnight Amsterdam time. If you wish to have your filters updated right away or encounter any problems, please contact the AMS-IX NOC. We can apply a new configuration for the route-server to reflect your new policy.

Please check the list of these supported IRRDBs.

Would you like to have your filters updated right away or do you encounter any problems?


The 3+1 peering modes of route servers

As stated above, from October 2017 and onwards, our route servers in The Netherlands implement 3+1 peering modes of prefix filtering in the outbound direction.

  • Peering mode ‘Filtering based on both IRRDB and RPKI data’:
    This is the default option when a new BGP session is established with the AMS-IX route servers. By selecting this peering mode, the route servers are configured automatically to apply IIRDB based filtering (explanation is provided below) and RPKI based filtering (explanation provided below). In case you already have a session with the NL route servers and this option is not the selected one, we recommend you to switch your peering mode to the default one.
  • Peering mode ‘Filtering based on IRRDB data’:
    By selecting this option, Route Server outgoing prefixes extended filtering is based on IRRDB filtering only (explanation below). In summary, the prefixes that are being blocked are the ones that are not present in AS’s announced AS/AS-SET. We strongly recommend to make sure that your IRRDB objects are correctly updated and described in the RIPE database when having this option enabled (and the default one)
  • Peering mode ‘Filtering based on RPKI data’:`
    By selecting this option, Route Server outgoing prefixes extended filtering is based on RPKI filtering. In summary, the prefixes that are being blocked are the ones with ROA status ‘INVALID’. We strongly recommend to make sure that your IRRDB ROAs are correctly updated in the RIPE database when having this option enabled (and the default one).

Optionally, we can offer the following peering mode in case you really need an unfiltered BGP feed (e.g. for research purposes”:

  • Peering mode ‘Just tagging’:
    By selecting this not recommended option, no filtering is applied to announced prefixes. That functionality is helpful for research institutes who want to receive all information or organisations who want to apply their own BGP policies. However, any prefixes that are not filtered will be tagged by using standard BGP communities based on the following criteria (communities are given in the parentheses).
    • Prefix with ROA status: VALID (6777:65012)
    • Prefix with ROA status: INVALID (6777:65022)
    • Prefix with ROA status: UNKNOWN (6777:65023)
    • Prefix present in AS’s announced AS/AS-SET (6777:65011)
    • Prefix not present in AS’s announced AS/AS-SET (6777:65021)

IRRDB based Filtering

Our route servers generate their configuration based on a IRRDB parser script. The script supports most of the IETF snijders-rpsl-via draft extensions to the RPSL and the ‘import-via’ and ‘export-via’ attributes defined therein. Using these attributes, we allow for ASN32 aut-num objects in expressions and promote more elegant policy definitions regarding route servers.

You can use the following examples to update your peering policy to support the ‘import-via’ and ‘export-via’ attributes and make sure that you are fully compatible with AMS-IX route servers (we’re using AS1200 as the example aut-num object).

1. ANY
(Send and receive prefixes to/from any RS participant):

import-via: AS6777 from AS-ANY accept ANY
export-via: AS6777 to AS-ANY announce AS1200

(Send and receive prefixes to/from any RS participant EXCEPT AS666):

import-via: AS6777 from AS-ANY EXCEPT AS666 accept ANY
export-via: AS6777 to AS-ANY EXCEPT AS666 announce AS1200

(Send and receive prefixes ONLY to/from AS15703):

import-via: AS6777 from AS15703 accept ANY
export-via: AS6777 to AS15703 announce AS1200

AS-SETs also work in all cases:

(Send and receive prefixes to/from any RS participant EXCEPT ASes/AS-SETs included in AS1200:CUSTOMERS):

import-via: AS6777 from AS-ANY EXCEPT AS1200:AS-CUSTOMERS accept ANY
export-via: AS6777 to AS-ANY EXCEPT AS1200:CUSTOMERS announce AS1200:CUSTOMERS

(Send and receive prefixes ONLY to/from AS’s/AS-SETs contained in AS-SET AS1200:CUSTOMERS):

import-via: AS6777 from AS1200:AS-PEERS accept ANY
export-via: AS6777 to AS1200:AS-PEERS announce AS1200:AS-CUSTOMERS


# Import from no-one

import-via: AS6777 from AS-ANY accept NOT ANY

# Export to no-one

export-via: AS6777 to AS-ANY announce NOT ANY

7. afi lists are also supported
(initially described in RFC4012), e.g.:

import-via: afi ipv4.unicast AS6777 from AS-ANY EXCEPT AS1200:AS-CUSTOMERS accept ANY
export-via: afi ipv4.unicast AS6777 to AS-ANY EXCEPT AS1200:AS-CUSTOMERS announce ANY

AMS-IX route server objects

Relevant objects for participating peers in the Route Server project are grouped into these AS-SETs:

  • AS-AMS-IX-RS (list of connected peers)
  • AS-AMS-IX-RS-SETS (List of advertised AS-SETs)
  • AS-AMS-IX-RS-V6 (List of connected IPv6 peers)
  • AS-AMS-IX-RS-SETS-V6 (List of advertised AS-SETs for IPv6 peers)
  • RS-AMS-IX-ISP-LANS (List of all AMS-IX peering LAN ranges)
  • AS-AMS-IX-SET (List of all route server ASNs)

BGP Traffic Engineering

In this section, you will find information about BGP Community filtering and AS-PATH prepending.

BGP Community filtering

Provide a BGP community filtering mechanism to peers

Route server peers are able to manipulate outbound routing policies via an in-band mechanism using BGP communities, instead of relying on “import/import-via”, “export/export-via” RPSL attributes. The downside to this method is that peers won’t be able to control inbound policies.

Currently, the mechanism is implemented to support the traditional BGP communities, the Extended BGP communities and the Large BGP communities.

Please note that AMS-IX is planning to drop the support for the Extended communities as their functionality is fully covered from the Large communities.

When you want to signal the Route-Server to filter prefixes for destination networks that have 16bit ASN, you can use either the traditional communities or the Extended communities. In case the destination network is a 32bit ASN, then you can use either the Extended communities or the Large communities.

To make the above easily understandable, we provide the table below that summarises the available options:

Source ASN and destination ASNLegacy communitiesExtended communitiesLarge communities
16bit ASN to 16bit ASNYESYESYES
16bit ASN to 32bit ASNNOYESYES
32bit ASN to 16bit ASNYESYESYES
32bit ASN to 32bit ASNNONOYES

Note that you have to use the appropriate route server AS number, based on the AMS-IX location you’re peering in, with 6777 representing Amsterdam. All locations support this feature.

For traditional BGP communities, the offered options are:

  • Do not announce a prefix to a certain peer: 0: <peer-as>
  • Announce a prefix to a certain peer: 6777: <peer-as>
  • Do not announce a prefix to any peer: 0:6777
  • Announce a prefix to all peers: 6777:6777

For BGP Extended communities, you can use the offered options below:

  • Do not announce a prefix to a certain peer: RT:0: <peer-as>
  • Announce a prefix to a certain peer: RT:6777: <peer-as>
  • Do not announce a prefix to any peer: RT:0:6777

For Large communities, the offered options are as below:

  • Do not announce a certain prefix to peer-as: 6777:0: <peer-as>
  • Announce a certain prefix to a certain peer: 6777:1: <peer-as>
  • Do not announce a certain prefix to any peer: 6777:0:0

Note that if you want to advertise a specific prefix to a specific customer only, then you need to combine “6777: <peer-as>” and “0:6777” BGP communities.

AS-PATH prepending

As with the community-based filtering, AMS-IX peers have the ability to influence the prefix selection process of other members based on AS-Path pretending. The mechanism can be enabled either with the traditional 16bit BGP communities, or with the 32bit Large communities.

For the traditional 16bit communities, the prefix tagging must be as below:

  • using 6777:65501, to prepend customer’s ASN once towards all other peers
  • using 6777:65502, to prepend customer’s ASN twice towards all other peers
  • using 6777:65503, to prepend customer’s ASN thrice towards all other peers

The same result can be achieved by tagging prefixes with Large Communities as below:

  • using 6777:101:<peer-as>, to prepend customer’s ASN once towards all other peers
  • using 6777:102:<peer-as>, to prepend customer’s ASN twice towards all other peers
  • using 6777:103:<peer-as>, to prepend customer’s ASN thrice towards all other peers

Please note that in case you use your own ASN in the “<peer-as>” position then we prepend your prefix to all other AMS-IX members. However, if you use in the position of the ASN of another AMS-IX member, the route servers will prepend the prefix once, twice, or thrice towards that particular AMS-IX member only.

Additional Notes

  • IRRDB policies work only on the AS level, whereas BGP communities work on the prefix level.
  • IRRDB policies are parsed and applied hourly, whereas BGP communities are effective immediately, being in-band.
  • BGP communities can only influence outbound (customer edge router to route server) announcements, whereas IRRDB policies can be used to influence inbound (route server to customer edge router) announcements, before reaching the customer edge router, thus potentially affecting the BGP decision process.
  • Path hiding should not be a problem, as we are employing the BIRD ‘secondary’ configuration option.
  • Note that validity of the IRRDB/RPKI based information provided is not guaranteed in any way.
    Please consider carefully whether your AMS-IX facing router should solely rely on information exchanged to and from the route servers.

Dynamic per-AS Prefix Limits

Dynamic per-AS Prefix Limits

Problem: route leaks

Route leaks are a problem. Either due to fat fingers, software bugs, or even malicious intent, route leaks are a fact of BGP life. A simple way to deal with the issue is using prefix limits.

Setting a static (fixed) limit to prevent customers from advertising more prefixes than intended does not really work for a route server service as the customer advertising the most prefixes has to be taken as the standard from which the limit is derived.

That leaves all the other customers with a wide margin in which they can freely leak routes; e.g. if the limit was set to 15,000, a customer advertising only one prefix could leak 14,999 more before being hitting the limit.

Adding insult to injury, this also has a cascading effect. Other route server peers having set a prefix limit for the session with the route servers, would potentially shut down the session, as they are now seeing thousands of additional prefixes.

Enter dynamic per-AS prefixes:

Since late October 2013, AMS-IX is applying prefix limits specific to the AS connecting to the route server service. For instance, peers advertising only a couple of prefixes will have a maximum prefix limit of 100. Peers advertising thousands of prefixes will be calculated based on an proportional coefficient.

For examples and a breakdown of the formula used, see the FAQ below.

Fluctuations in advertisements are normal and expected. As long as these are within reason, our limits will adapt accordingly (hence ‘dynamic’).


Q: I’m concerned that the limits for my AS are not big enough!

We hate to tear down sessions for no good reason, so rest assured that the limits are sufficiently relaxed. A 2 month lead period in which we were observing peer behavior and fine-tuned the algorithm ensured this as much as possible.

That being said, we value the stability of the service above everything else, so peers suddenly advertising thousands of prefixes when historically they have been advertising only a handful *will* hit the limit. In such cases, please contact us and we will be happy to reactivate the sessions.

Q: What is the prefix limit set for my AS?

Assuming you have member credentials, you can see your prefix limits here.

Q: I’m still concerned about the sanity of the limits, though.

We can also set a static limit for you, please contact us and state the limit you wish.

Q: Why not use IRRDB objects/RPKI to contain announcements?

AMS-IX specifically wants to ensure that the route server service is as stable as possible. Having peers announce unexpectedly large amounts of prefixes wreaks havoc as it tears down sessions for considerable amounts of peers causing CPU churn to all parties involved. This is a different matter compared to the *type* of prefixes advertised.

IRRDB data is prone to inconsistencies and even more importantly, their usage is mostly limited to the western world. AS’s from other regions of the world generally disregard IRRs.

Q: Can you give me examples of how this works?

Please consult the tables below:

Announced Prefixes yCoefficient xPrefix Limit (yx < z)
y < 502100
50 < y < 2492500
250 < y < 49921000
500 < y < 99922000
1000 < y < 20002 – 1,5next step of 1000
2000 < y < 100001,5 – 1,2next step of 1000
y > 100001,2next step of 1000
25 Announced Prefixes x 2 = 50. Limit set to 100
51 Announced Prefixes x 2 = 102. Limit set to 500
300 Announced Prefixes x 2 = 600. Limit set to 1000
900 Announced Prefixes x 2 = 1800. Limit set to 2000
1500 Announced Prefixes x 1,75 = 2625. Limit set to 3000
9000 Announced Prefixes x 1,22 = 10980. Limit set to 11000
15000 Announced Prefixes x 1,2 = 18000. Limit set to 19000

OhioIX Allowed Traffic


Allowed Traffic Types on Unicast Peering LANs

Important: The AMS-IX NOC reserves the right to disable ports that violate the rules below.

To ensure smooth operation of the AMS-IX infrastructure we impose a set of restrictions on what kind of traffic is allowed on the peering fabric. This page gives a summary of those restrictions. For more info, including hints on how to configure equipment, please see the AMS-IX Configuration Guide.


1. Physical Connection

Interface settings

100base and 10base Ethernet interfaces attached to AMS-IX ports must be explicitly configured with speed, duplex other configuration settings, i.e. they should not be auto-sensing.

2. MAC Layer

2.1 Ethernet framing

The AMS-IX infrastructure is based on the Ethernet II (or “DIX Ethernet”) standard. This means that LLC/SNAP encapsulation (802.2) is not permitted. For more information on the differences, see the Ethernet FAQ, question Ethernet types

Frames forwarded to AMS-IX ports must have one of the following ethertypes:

  • 0x0800 – IPv4
  • 0x0806 – ARP
  • 0x86dd – IPv6

2.3 One MAC address per connection

Frames forwarded to an individual AMS-IX port shall all have the same source MAC address.

2.4 No proxy ARP

Use of proxy ARP on the router’s interface to the Exchange is not allowed.

2.5 Unicast only

Frames forwarded to AMS-IX ports shall not be addressed to a multicast or broadcast MAC destination address except as follows:

  • broadcast ARP packets
  • multicast ICMPv6 Neighbour Discovery, Neighbour Solicitation, and MLD packets. Please note that this does not include Router Solicitation or Advertisement packets.

2.6 No link-local traffic

Traffic related to link-local protocols shall not be forwarded to AMS-IX ports. Link-local protocols include, but are not limited to, the following list:

  • IRDP
  • ICMP redirects
  • IEEE 802 Spanning Tree
  • Vendor proprietary protocols. These include, but are not limited to:
    • Discovery protocols: CDP, EDP, LLDP etc.
    • VLAN/trunking protocols: VTP, DTP
    • Interior routing protocol broadcasts (e.g. OSPF, ISIS, IGRP, EIGRP)
    • PIM-SM
    • PIM-DM
    • DVMRP
    • ICMPv6 ND-RA
    • UDLD
    • L2 Keepalives

The following link-local protocols are exceptions and are allowed:

  • ARP
  • IPv6 ND

3. IP Layer

3.1 No directed broadcast

IP packets addressed to AMS-IX peering LAN’s directed broadcast address shall not be automatically forwarded to AMS-IX ports.

3.2 no-export of AMS-IX peering LAN

IP address space assigned to AMS-IX Peering LANs must not be advertised to other networks without explicit permission of AMS-IX.

4. Application layer (TCP/IP model)

Using Application layer protocols to unleash malicious actions against other AMS-IX customers over AMS-IX infrastructure, is forbidden. AMS-IX reserves the right to disable a customer’s port in case of complaints of attacks/abuse originating from such customers. The following list includes, but is not limited to:

  • BGP hijacking
  • DNS amplification/flood
  • HTTP flood
  • NTP amplification
  • UDP flood
  • ICMP flood
  • Simple Service Discovery Protocol (SSDP)

Did you experience or notice a customer abusing their AMS-IX connection for malicious actions?


Please get in touch to file a complaint providing information about:

  • The timestamp of the event
  • The type of the event
  • The related prefixes/ASNs
  • The parties involved
  • Any other relevant information providing appropriate context.

Typically, this information can be found in (but is not limited to) router logs, syslog servers, packet captures, BGP monitoring services.

AMS-IX will investigate to confirm the complaint and take appropriate action.

OhioIX Configuration Help

Config guide copied from AMS-IX


How to set up your device when connecting to AMS-IX? Here are some pointers to start with.

AMS-IX rules restrict the type of traffic and number of source MAC addresses that any member is allowed to send to the exchange. The AMS-IX platform is built around photonic cross connects, Layer 1 switches, which introduce short link flaps for the customers with 10GE connections when moving customer connections between Ethernet switches.

This article will tell you how to prevent those flaps from influencing your session and how to configure your interface towards AMS-IX to only send allowed traffic towards the exchange.

Config Guide Hero

1. Introduction

The Amsterdam Internet Exchange operates as a shared Layer 2 (L2) Ethernet infrastructure. Large Ethernet LANs require that more or less everyone plays by the same set of rules. In other words, they can be quite sensitive to misbehaviour.

In order to improve the stability of the Exchange, AMS-IX has defined a set of rules to which every member’s connection must adhere, the Technical Specifications.

It is not always easy to immediately grasp the subtleties of configuring equipment to adhere to the rules. Let us help you fill in some blanks and provide examples and hints for the most common equipment.

1.1 Definition of Terms

In this document we refer to terms like ‘L2 device’, ‘L2/L3 hybrid’, etc. Here are our definitions:

L2 Device
A device that functions as a Layer 2 (Ethernet) Bridge (a.k.a. ‘switch’, ‘bridge’, ‘hub’, etc).

L3 Device
A device that functions as a L3 (IP) router only. This means it does not bridge any Ethernet frames between its interfaces. Such a device is typically called a ‘router’.

L2/L3 Hybrid
A device that functions both as a L2 bridge and a L3 router. This means it can both bridge Ethernet frames between its interfaces as well as route IP traffic and participate in IP routing protocols. Foundry/Brocade, Force10 and Extreme are common examples of this type of device.

2. The AMS-IX Topology

The AMS-IX network is built as a redundant (virtual) hub & spoke topology using Glimmerglass photonic cross-connects and Extreme Networks (formerly Brocade) switches.

Customers up to 1GE are directly connected to Brocade edge switches, available at each location. One can connect with 1 (or mutliple) GE via multimode or singlemode fiber. Fiber connections are supported using SX or LX optics, and in some cases also LH-A or LH-B.

10GE customers connect to the AMS-IX platform via Glimmerglass photonic cross-connects, Layer 1 switches. Those Layer 1 switches connect the customer to one of a pair of locally (in the datacenter) available Ethernet switches. The 10G Ethernet access switches are locally available at each location and one can connect with either ER or LR optics.

2.1 General 10GE Specifics

A photonic switch introduces less than 3 dB of attenuation between the AMS-IX patch panel and the Ethernet access switch. A switchover between the two topologies introduces a very short link flap (typically < 20 ms). In order to avoid BGP instability, you should configure your router to ignore such events.

Most vendors implement specific commands to ensure BGP ignores such events (see ’10GE specifics’ in the respective vendor sections for Cisco, Force10. Foundry/Brocade and Juniper configurations). If your router platform does not support such a feature, we advise you to configure the equivalent of:

no bgp fast-external-fallover

To ignore link flaps and wait for the BGP hold timers to expire before resetting sessions.

3. General Configuration Recommendation

Here is what we recommend:

3.1 IPv4 ARP / IPv6 Neighbour Timeout

Each equipment vendor implements its own maximum ages for the IPv4 ARP and IPv6 neighbor caches. The values vary widely and in at least one case (Linux) it is not a constant.Low ARP timeouts can lead to excessive ARP traffic, especially if the values are lower than the BGP KEEPALIVE interval timers. On the other hand, long timeouts can theoretically lead to longer downtime if you change equipment (since your peers still have the old MAC address in their ARP cache). With BGP this is unlikely to happen because your router will start re-establishing BGP sessions as soon as it is back up, causing its peers to update their ARP cache as well.

We recommend setting the ARP cache timeout to at least two hours, preferably four (240 minutes). See the sections on specific equipment vendors for examples.

3.2 Peering LAN Prefix

The IPv4 prefix for the AMS-IX peering LAN ( is part of AS1200, and is not supposed to be globally routable. This means the following:

  • Do not configure ‘network’ in your router’s BGP configuration (seriously, we have seen this happen!).
  • Do not redistribute the route, a supernet, or a more specific outside of your AS. We (AS1200) announce it with a no-export attribute, please honour it.

In short, you can take the view that the Peering LAN is a link-local address range and you may decide to not even redistribute it internally (but in that case you may want to set a static route for management access so you can troubleshoot peering, etc.).

3.3 BGP Routing

Please exchange only unicast routes over your BGP sessions in the ISP peering LAN. Exchanging multicast routes is useless since multicast traffic is not allowed on the (unicast) ISP peering LAN.

4. Allowed Traffic Types and Configurations

The Technical Specifications state the following:

  • There are only three ethertypes allowed:
    • 0x0800 – IPv4
    • 0x0806 – ARP
    • 0x86dd – IPv6

This implies IEEE 802.3 compliance, not 802.2, so no LLC encapsulation!

  • Only one MAC address allowed on a port, i.e. all frames sent towards the AMS-IX should have exactly one unique MAC address.
  • The only non-unicast traffic allowed is:
    • Broadcast ARP
    • Multicast ICMPv6 Neighbour Discovery (ND) packets. (NOTE: this does not include Router Advertisement (ND-RA) packets!)
  • AMS-IX member equipment should only reply to ARP queries for IP addresses of their directly connected AMS-IX interface. In other words, proxy ARP is not allowed.
  • Traffic for link-local protocols is not allowed, except for ARP and IPv6 ND (see above).
  • IP packets addressed to AMS-IX peering LAN’s directed broadcast address shall not be automatically forwarded to AMS-IX ports.
  • The speed and duplex setting of 10baseT and 100baseTX ports must be statically configured, i.e. auto-negotiation should be disabled.
  • The AMS-IX platform is designed to carry Ethernet frames with a payload of up to 1500 bytes. MTU settings must be configured accordingly.

4.1. Physical L2 Topology

The AMS-IX rules dictate that only one MAC address is allowed behind a port. This means that you have to be extremely careful when connecting a device that can act as a L2 device.

We allow only one MAC address because we allow no additional devices behind the AMS-IX ports. Extended L2 networks are not under the control of AMS-IX, but instabilities in a L2 network behind the AMS-IX switches can and typically do have a negative impact on the whole exchange. Forwarding loops and spanning tree topology changes are good examples of this. By enforcing the one-MAC-address-per-port rule, we effectively prevent forwarding loops and STP traffic from intermediate L2 devices.

In short, an intermediate L2 device may only bridge frames from the member’s router to the AMS-IX port (so we see only one MAC address) and should otherwise be completely invisible. No connected device should bridge frames from other devices onto AMS-IX, or talk STP on its AMS-IX interface.

4.1.1 Connecting a L3 Device

The most preferred way of connecting to AMS-IX is directly through a L3 device (router), see the diagram below. This is your best chance of not leaking MAC addresses or STP traffic and it greatly increases the stability of the network.

Ams Ix Config Guide Connecting A L3 Device

4.1.2 Connecting Through a L2 Device

We neither recommend nor encourage connecting your router through a L2 device, but if you do so, keep the following in mind:

  • You must make absolutely sure that only traffic to/from your L3 router’s interface goes to/from the AMS-IX port.
  • You must make absolutely sure that all legitimate traffic to/from your L3 router’s interface goes to/from the AMS-IX port.
    • MLD snooping may block legitimate ICMPv6 neighbour solicitations.
  • You must disable spanning tree on your link to AMS-IX.
Ams Ix Config Guide Connecting Via L2 Device

On all intermediate L2 devices, consider using explicitly defined port-based VLANs for production ports. It forces you to understand your topology and reduces the chances of a nasty surprise further down the road. In particular, we strongly recommend using a dedicated VLAN for the path from your router to AMS-IX.

4.1.3 Connecting a L2/L3 Hybrid

The L2/L3 hybrid switch/router requires careful configuration in order to prevent unwanted traffic from leaking onto the exchange. As with intermediate L2 devices, you need to keep the following in mind:

  • You must make absolutely sure that your AMS-IX port is configured as a ‘router only’ port.
  • You must disable Spanning Tree on your link to AMS-IX.
Ams Ix Config Guide Connecting A L2L3 Hybrid

On a L2/L3 hybrid device, it is a good idea to put the AMS-IX connected interface (untagged) in a separate (non-default) port-based VLAN without spanning tree and with no other ports in it. This is the best way to ensure that no traffic from other ports will be bridged onto the AMS-IX port.

4.2 Commonly Seen Illegal Traffic and Setup

Any traffic other than the types mentioned in the previous section is deemed to be illegal traffic. In this section we will list some of the more common types of violations we see at AMS-IX and give some arguments as to why it is considered unwanted.

4.2.1 Multiple MAC addresses

Since AMS-IX operates on the principle of one router per port, there should be one MAC address visible behind each port. Some members connect through intermediate switches, or use a L2/L3 hybrid device. If these devices are not configured properly, they can cause forwarding loops, STP instabilites, and lots of unwanted traffic on the exchange. There is no excuse for these devices to leak traffic, and there is no necessity to talk STP on the link to AMS-IX. Hence, by enforcing the one-MAC-address rule, we also enforce these issues. Beware that this rule is enforced automatically, so if you leak traffic from another MAC address, your legitimate traffic may be blocked (depending on which MAC address the switch sees first)!

4.2.2 Spanning Tree (STP)

This point is closely related to the previous point. The device(s) connected to the AMS-IX port are not allowed to be visible as L2 bridges. This means that they should not speak STP (spanning tree) or any other (proprietary) L2 specific protocol.

4.2.3 Routing protocols: EIGRP, OSPF, RIP, IS-IS

The only routing protocol allowed on AMS-IX is BGP. There is no valid reason for interior routing protocols to appear on the shared medium. These protocols only cause unnecessary multicast and broadcast traffic.

4.2.4 (Cisco) Keepalive

By default Cisco routers and switches periodically test their (Fast) Ethernet links by sending out Loopback frames (ethertype 0x9000) addressed to themselves. Call it a ‘L2 self-ping’ if you will. In a switched environment it can be used to test the functionality of the switch and/or keep the router’s MAC address in the switch’s address table.

In the AMS-IX environment, this is not useful since we use MAC timeouts that are larger than the typical BGP and/or ARP timeouts. In fact, the keepalives a may actually cause port security violations if they are being sent by an intermediate switch.

4.2.5 Discovery protocols: CDP, EDP, LLDP

Various vendors (e.g. Extreme, Cisco) tend to ship their boxes as gregarious devices: by default they announce their existence out of all their interfaces and try to find family members. CDP (Cisco) and EDP (Extreme) are examples of this, but there are others.

The only reason for running discovery protocols is to support certain types of autoconfiguration. Autoconfiguration on an Internet Exchange is a very bad idea. Hence, there is absolutely no reason to run discovery protocols on your AMS-IX interface. Discovery protocols typically cause unwanted broadcast or multicast traffic.

4.2.6 Non-unicast IPv4: IGMP, DHCP, TFTP

On the ISP peering LAN, the only non-unicast traffic that is allowed is the ARP query.Sometimes we see equipment trying to get a configuration through broadcast TFTP, or configure themselves through DHCP. These options are unsafe and we strongly advise against them.Other equipment has IGMP turned on by default (or by accident). The Peering LAN is for unicast IP traffic only, so there is no point in configuring multicast on the AMS-IX interface.

4.2.7 Proxy ARP

Since traffic over AMS-IX is exchanged based on BGP routes, there is no reason to answer ARP queries for any other IP address(es) than those that are configured on your AMS-IX interface.Unfortunately, some vendors (e.g. Cisco) ship their products with proxy ARP enabled by default.Proxy ARP is not only sloppy, it can lead to unwanted traffic on your network. Consider that if you have it enabled at AMS-IX, it’s likely to be enabled at other peering points, allowing parties on both sides to use you as a transit.Proxy ARP is not allowed.

4.2.8 Non-unicast IPv6: IPv6 ND-RA

IPv6 router advertisements are not allowed: they generate a lot of unnecessary traffic, since IPv6 hosts on AMS-IX are not autoconfigured and besides, you don’t want to be the default router for AMS-IX as a whole.

4.2.9 Miscellaneous non-IP: DEC MOP, etc.

Some vendors enable protocols other than IP by default. Cisco, for example ships certain versions of IOS with DEC MOP enabled by default. This is non-IP traffic and has no place on AMS-IX.

5. Cisco Configuration Hints

Cisco’s philosophy seems to be similar to that of some PC OS vendors: enable as many protocols and features as possible by default, so the device works out-of-the-box in most situations. Unfortunately, this means that a lot of unnecessary features are turned on that, while harmless in LAN or corporate environments, can cause undesired traffic on an Internet Exchange.Typical things that need to be disabled are: autoconfiguration protocols (DHCP, BOOTP, TFTP config download over the AMS-IX interface), CDP, DEC MOP, IP redirects, IP directed broadcasts, proxy ARP, IPv6 Router Advertisements, keepalive.

Intermediate switches or hybrid devices will also need to disable VTP, STP, etc.

5.1 Global Config

Global configuration

! Do not run a DHCP server/relay agent
no service dhcp
! Older IOS versions require this instead of the above.
no ip bootp server
! Do not download configs through TFTP
no service config
! Do not run CDP
no cdp run

5.2 Interface Config

Interface configuration

! Don't do redirects -- if they don't know
! how to route properly, tough luck!
no ip redirects
! Don't run proxy ARP on your AMS-IX interface
no ip proxy-arp
! Don't run CDP on your AMS-IX interface
no cdp enable
! Directed broadcasts are evil.
no ip directed-broadcast
! Disable the DEC drek if you haven't done so globally yet.
no mop enable
! For (Fast)Ethernet: no auto-negotiation on your connection.
! no negotiation auto
! duplex half
duplex full
! L2 keepalives are useless on the AMS-IX
no keepalive

5.3 Layer 2 Config

It is difficult to give a complete guide for Cisco products, because of the many different types of devices and (IOS) software versions. When in doubt, consult your documentation.

5.3.1 29xx and 35xx Series

If you use a Cisco Layer 2 device (such as the 2900 and 3500 series), you have to turn off VTP (VLAN Trunking Protocol), DTP (Dynamic Trunking Protocol), LLDP, and UDLD.

In global config mode:

vtp mode transparent
no spanning-tree vlan 1200
! If you don't need LLDP, disable globally
no lldp run
! If you don't need CDP, disable globally
no cdp run
vlan 1200
 name AMS-IX
interface /IfIdent/
 description Interface to AMS-IX
 switchport access vlan 1200
 switchport mode access
 switchport nonegotiate
 no keepalive
 speed nonegotiate
 no udld enable
 ! If CDP has not been disabled globally:
 no cdp enable
 ! If LLDP has not been disabled globally:
 no lldp receive
 no lldp transmit
 ! If you do not want to shut off STP:
 spanning-tree bpdufilter enable

5.3.2 7600 Series

Members are advised not to run 12.2(33)SRC on their Cisco 7600’s with a sup720. This software release does not always send or forward replies to solicit requests, even if it’s acting as a pure Layer 2 switch between a member router and the AMS-IX fabric.

To make a Cisco 7600 switch ‘silent’ the following configuration seems to work:

no service dhcp
no ip bootp server
vtp mode transparent
spanning-tree mode pvst
spanning-tree extend system-id
no spanning-tree vlan XX
vlan XX
 name amsix
interface GigabitEthernet6/0/0
 description to-amsix switchport
 switchport access vlan XX
 switchport mode access
 switchport nonegotiate
 no mls qos trust
 no cdp enable
 spanning-tree bpdufilter enable

Vlan XX was also removed from the ‘allow list’ on all dot1q trunk ports not related to the setup, in this case every dot1q trunk port in the chassis.

5.3.3 Catalyst 6500 Series

CatOS and IOS are different beasts, so for Catalyst switches, the following applies:

set vtp mode off
set port name /IfIdent/ My AMS-IX Port
set cdp disable /IfIdent/
set udld disable /IfIdent/
set trunk /IfIdent/ off dot1q
set spantree bpdu-filter /IfIdent/ enable
set vlan 1200 name My_AMS-IX_Vlan
set vlan 1200 /IfIdent

If, for some reason, you cannot afford to turn off VTP globally, the only way to turn it off on individual ports seems to be by using l2pt:

set port l2protocol-tunnel /IfIdent/ vtp enable

Depending on your CatOS platform, you may or may not be able to do this.

5.3.4 CRS (IOS-XR)

CDP, Proxy ARP, Directed Broadcast, Link Auto Negotiation, and ICMP redirects* are disabled by default in IOS-XR. ICMP redirect messages are disabled by default on the interface unless the Hot Standby Router Protocol (HSRP) is configured.

5.3.5 Other Devices

For other devices, some or all of the above may apply. Check your documentation for details.

5.4. Cisco Aggregated Links

5.4.1 Catalyst 6500 Series

Configure the port-channel as on, or should you want LACP, as active. Please do not not configure any forms of negotiate or desirable as the AMS-IX switches do not speak PAgP.

Load-balancing over four ports may result in an unequal distribution due to bug CSCsg80948.

! Here is an example configuration:
interface GigabitEthernet1/1
 description AMS-IX Link 1
 no ip address
 no ip redirects
 no ip proxy-arp
 no keepalive
 no cdp enable
 channel-group 1 mode on
interface GigabitEthernet1/2
 description AMS-IX Link 2
 no ip address
 no ip redirects
 no ip proxy-arp
 no keepalive
 no cdp enable
 channel-group 1 mode on
interface Port-channel1
 description AMS-IX aggregated link
 ip address 80.249.20x.y
 no ip redirects
 no ip proxy-arp
 no keepalive

Here are examples of LACP configurations:

Cisco IOS 65xx/76xx:
interface GigabitEthernet1/1
 description AMS-IX Link 1
 channel-group 10 mode active
!  (12.2(18)SXF2  or  (12.2(33)SRC) upwards)
 lacp rate fast  
interface GigabitEthernet1/2
 description AMS-IX Link 2
 channel-group 10 mode active
interface Port-channel10
 description AMS-IX aggregated link
 no switchport
 ip address 80.249.20x.y
Cisco IOS-XR:
interface Bundle-Ether 10
 description AMS-IX aggregated link
 ipv4 address 80.249.20x.y
interface GigabitEthernet 1/0/0/0
 description AMS-IX Link 1
 bundle-id 10 mode active
!  (3.2 upwards)
 lacp period short
interface GigabitEthernet 1/0/1/0
 description AMS-IX Link 2
 bundle-id 10 mode active
(don't forget to commit)
Cisco NX-OS:
feature lacp
interface ethernet 2/1
 description AMS-IX Link 1
 channel-group 10 mode active
 lacp rate fast
interface ethernet 2/2
 description AMS-IX Link 2
 channel-group 10 mode active
interface port-channel 10
 description AMS-IX aggregated link
 ip address 80.249.20x.y

5.4.2 GSR Series

Do not set a static MAC address on the Port-channel interface. This causes CEF inconsistencies and other assorted failures.Link aggregation and IPv6 do not seem to play well together. Cisco advises against trying this.

Some changes will result in a different MAC address getting chosen for the aggregated link (likely such as reloading a linecard, if it contains the first port in the bundle). This will keep your ports dysfunctional due to port security on the AMS-IX switches and you will have to contact the AMS-IX NOC in such cases to fix this.

Some restrictions apply to what features are supported on link bundles (e.g. sampled NetFlow only on ISE/Engine4+; no uRPF). Also not all line cards support link bundling, and if traffic towards AMS-IX comes in on such an interface you will experience suboptimal load-balancing. Please see the Cisco documentation for more details.

Support for link bundling on Engine 5 linecards will come in 12.0(33)S.Cisco Engineering have a special train called ‘Phase 3’ (lb-eft-ph3) that is purported to also provide functionality such as MAC address accounting for Port-Channel interfaces. This seems to have been integrated into 12.0(32)S, but IPv6 does not seem to be supported yet.

Below follows a list of Cisco Bug IDs (ddts) related to link aggregation that you need to consider when choosing an appropriate IOS image

present in 12.0(26)S1; fixed in 12.0(26)S3, 12.0(27)S2, 12.0(28)S1, 12.0(30)SSymptoms: Over 90% CPU usage by CEF Scanner on all linecards and %TFIB-7-SCANSABORTED errors occur when configuring a link bundle. Also, the router sends traffic to MAC addresses taken from its ARP table seemingly at random, instead of to the appropriate next-hop’s MAC address.

present in post-CSCee27396; fixed in 12.0(26)S4, 12.0(27)S3, 12.0(28)S1, 12.0(30)SSymptoms: When traffic passes through a router, the router blocks traffic for certain prefixes behind a port-channel link.

present in 12.0(25)S3, 12.0(26)S1, 12.0(27)S2, 12.0(28)S; fixed in 12.0(25)S4Symptoms: An HSRP state change on any Engine2 interface causes a microcode bundle flap on all other Engine2 linecards, preventing load balancing to work due to vanilla microcode getting loaded.

present in 12.0(26)S3, 12.0(27)S2, 12.0(29)SSymptoms: Router sends Ethernet frames with a source MAC address of beef.f00d.beef and destination MAC address f00d.beef.f00d (which is the pattern scribbled in unallocated memory in linecards), with what looks to be a legitimate payload of transit traffic. This is one of the symptoms of CSCee27396

present in 12.0(26)S5; fixed in 12.0(26)S5, 12.0(27)SSymptoms: The BGP Router process flushes the BGP tables for each peer when you change one neighbor’s description. This pegs the GRP CPU at 99% for quite a while.

present in 12.0(31)S; fixed in 12.0(31)S2 (CSCei53226)
Symptoms: IOS (at least in the PRP code) places each individual public peer in its own update-group if remove-private-as is configured on a peer. Needless to say, this scales badly for a router connected to an Internet exchange. (Try ‘show ip bgp replication’.) A collection of hearsay follows for recent IOS images for the GSR PRP regarding link aggregation. AMS-IX does not run any GSRs. Please take this information with appropriately-sized grains of salt.

  • 12.0(24)S2 is not advisable (not many specifics known but they include CSCef89562 and CSCee33045)
  • 12.0(24)S6 boots but load-balancing is completely off 12.0(25)S until S3 have CSCdz33664
  • 12.0(26)S until S4 have CSCef89562, where Engine4+ linecards can have continuously flapping interfaces, but is also somewhat required for Quadra linecards
  • 12.0(26)S3 has CSCee27396 integrated but not CSCef12828, which leads to traffic blackholing 12.0(27)S until S3 have CSCef89562 as well
  • 12.0.(27)S1 has a problem where it sends traffic to random destinations 12.0(27)S2 has CSCee27396 integrated but not CSCef12828
  • 12.0(27)S4 reportedly works reasonably well on PRP2s
  • 12.0(28)S1 has problems with Engine2 linecards (CSCef78098) and Engine4+ (CSCef89562)
  • 12.0(28)S2 reportedly works better but still sometimes emits beef.f00d.beef frames on normal ports with only an IPv6 address configured
  • 12.0(30)S has only been observed to exhibit CSCef12828-like symptoms in conjunction with broken hardware, and also (sometimes) to still emit frames from MAC beef.f00d.beef.
  • Routers occasionally still send out frames with beef.f00d.beef as MAC source address on interfaces with an IPv6 but no IPv4 address configured, even on regular links.
  • Due to the massive amount of feature requests there will be both a 12.0(32)S and a new 12.0(32)SY train.

You can check for incorrect next-hops by attaching to the linecard and executing show controllers rewrite and show adjacency internal and comparing the two rewrite strings for a certain peer’s IPv4 address (suffix the commands with | begin 80.249.20a.b). The first six bytes of the returned long hex string should be the peer’s MAC address, and equal for all three occurrences.

! An example configuration follows:
interface Port-channel1
 description AMS-IX Aggregated Link
 ip address 80.249.20x.y
 no ip redirects
 no ip directed-broadcast
 no ip proxy-arp
 channel-group minimum active 1
 no channel-group bandwidth control-propagation
 hold-queue 150 in
interface GigabitEthernet1/2/1
 no keepalive
 no negotiation auto
 channel-group 1
 no cdp enable
interface GigabitEthernet1/2/2
 no keepalive
 no negotiation auto
 channel-group 1
 no cdp enable

Specifying a value is optional, but setting it to the amount of ports in an aggregated link multiplied by 75 is advised.show interfaces Port-channel 1 will display keepalives enabled even though they are not; also, the BIA (burnt-in address, shown as 0000.0000.0000) can be ignored.

If you disable autonegotiation on Gigabit Ethernet ports


5.4.3 CRS (IOS-XR)

interface Bundle-Ether1
 description Aggregated interface to AMS-IX Peering LAN
 ipv4 address 80.249.20x.y
 ipv6 nd suppress-ra
 ipv6 address 2001:07F8:1::A50a:bcde:1/64
 ipv6 enable
 bundle minimum-active links 1
interface TenGigE0/0/0/0
 description interface to AMS-IX Peering LAN #1
 bundle id 1 mode on
interface TenGigE0/0/0/1
 description interface to AMS-IX Peering LAN #2
 bundle id 1 mode on

5.5 Cisco 10GE Specifics

IOS supports no bgp fast-external-fallover and event dampening . The no bgp fast external-fallover tells the device to not act immediately on link flaps but to wait for the BGP hold timers to expire before resetting sessions.

Newer versions of Cisco IOS even support ip bgp fast-external-fallover deny in a per-interface context.Note that in practice we have found that the previously advised carrier-delay does not work as expected on Cisco equipment. We suggest you disable fast-external-fallover instead.

In IOS-XR, to disable BGP Fast External Failover globally, add bgp fast-external-failover disable to your global bgp configuration.

5.6 IPv6 Config

Responses on a ICMPv6 multicast listener queries result in bursts of ICMPv6 multicast listener reports. To prevent this configure no ipv6 mld router in interface context. Some other per-interface commands we recommend on a Cisco device:

! disable ICMPv6 multicast listener reports
no ipv6 mld router
! disable IPv6 multicast forwarding
no ipv6 mfib forwarding
! v6 ND-RA is unnecessary and undesired
ipv6 nd suppress-ra
! on IOS version 12.2(33)SRC it is the following syntax:
ipv6 nd ra suppress
! on even more later IOS/IOS-XE versions the "all" option is needed to also
! suppress responses to Router Solicitation messages besides periodic RAs:
ipv6 nd ra suppress all
! disable PIM on a specified interface
no ipv6 pim
! disable MLD snooping on hybrid devices and intermediate layer-2 devices
no ipv6 mld snooping

5.7 MTU Config

On newer Cisco IOS/IOS-XR versions, the interface IP MTU is automatically set, based on the presence or absence of 802.1q tags. For more details, please consult this document.

6. Extreme Networks Configuration Hints

CAUTION: Updating Firmware in an EAPS Environment

When updating firmware in an Extreme Networks EAPS environment, be sure to temporarily disable your AMS-IX port(s). TFTP file transfers may cause EAPS instabilities resulting in bogus traffic. This is likely to trip the port security on the AMS-IX switches, which may result in 10 minutes downtime.Most people who use Extreme equipment do not have problems with their AMS-IX connections, some do. We would appreciate feedback from people running Extreme equipment on how they configure their AMS-IX facing side.

If you are running Extreme equipment and would like to share your feedback


6.1 L2 Configuration

The configuration fragment below shows how to configure an intermediate L2 switch, which is also part of an EAPS ring. Port 1 is connected to the AMS-IX switch. Ports 2 and 3 are in the ring. The router is somewhere in that ring, in the ‘amsix’ VLAN.

create vlan "ring"
configure vlan "ring" tag 1200  # VLAN-ID=0x4b0  Global Tag 3
configure vlan "ring" qosprofile "QP8"
configure vlan "ring" add port 2 tagged
configure vlan "ring" add port 3 tagged
create vlan "amsix"
configure vlan "amsix" tag 1700  # VLAN-ID=0x6a4  Global Tag 9
configure vlan "amsix" add port 1 untagged
configure vlan "amsix" add port 2 tagged
configure vlan "amsix" add port 3 tagged
configure port 1 auto off speed 1000 duplex full
configure port 2 auto off speed 1000 duplex full
configure port 3 auto off speed 1000 duplex full
disable edp port 1
disable igmp snooping
disable igmp snooping with-proxy
create eaps "ring-eaps"
configure eaps "ring-eaps" mode transit
configure eaps "ring-eaps" primary port 2
configure eaps "ring-eaps" secondary port 3
configure eaps "ring-eaps" add control vlan "ring"
configure eaps "ring-eaps" add protect vlan "amsix"
enable eaps "ring-eaps"

6.2 L3 Configuration

The configuration fragment below shows the relevant configuration information for a L3-only device. As in the previous example, port 1 is connected to AMS-IX and is configured in the ‘amsix’ VLAN (untagged).

# Config information for VLAN amsix.
create vlan "amsix"
configure vlan "amsix" tag 1200 
configure vlan "amsix" protocol "IP"
configure vlan "amsix" ipaddress 80.249.20/X/./Y/
configure vlan "amsix" add port 1 untagged
configure port 1 display-string "AMS-IX"
disable edp port 1
enable ipforwarding vlan "amsix"
disable ipforwarding broadcast vlan "amsix"
disable ipforwarding fast-direct-broadcast vlan "amsix"
disable ipforwarding ignore-broadcast vlan "amsix"
disable ipforwarding lpm-routing vlan "amsix"
disable isq vlan "amsix"
disable irdp vlan "amsix"
disable icmp unreachable vlan "amsix"
disable icmp redirects vlan "amsix"
disable icmp port-unreachables vlan "amsix"
disable icmp time-exceeded vlan "amsix"
disable icmp parameter-problem vlan "amsix"
disable icmp timestamp vlan "amsix"
disable icmp address-mask vlan "amsix"
disable subvlan-proxy-arp "amsix"
configure ip-mtu 1500 vlan "amsix"
# IP Route Configuration
configure iproute add blackhole default
disable icmpforwarding vlan "amsix"
disable igmp vlan "amsix"

7. Force10 Configuration Hints

There isn’t much to configure on Force10 routers. The Network Operations Guide and various pages in the Team Cymru Document Collection provide useful information on Force10 router configuration and management.

! Disable proxy ARP on your AMS-IX interface
Force10(conf)#interface tengigabitethernet 0/0
Force10(conf-if-te-0/0)#no ip proxy-arp
!  Disable IPv6 ND RAs
Force10(conf-if-te-0/0)#ipv6 nd suppress-ra
! The default ARP timeout is 4 hours, but can be changed with this command
Force10(conf)#interface tengigabitethernet 0/0
Force10(conf-if-te-0/0)#arp timeout /minutes/

7.1 Force10 10GE Specifics

Force10 E-Series switch/routers support no bgp fast-external-fallover, BGP Graceful Restart, and a link debounce timer to maintain BGP stability during topology switchovers.The recommended option is to use the /link debounce/ command to delay link change notifications on the interface. The default for fiber interfaces is 100 ms, which is a good value to use.

8. Foundry/Brocade Configuration Hints

The following fragment of configuration gives an idea of how to configure a Foundry (BigIron) device. Depending on the actual role of the device (router or switch between router and AMS-IX) and the type of code loaded into the device you may need to mix and match a little here.

! Define a single-port VLAN for the AMS-IX port
vlan number name "AMS-IX" by port
no spanning-tree
untagged ethernet if
! Configure the AMS-IX interface
interface ethernet if
 port-name "AMS-IX"
! Behave as a router.
 no spanning-tree
! Don't do IPv6 ND-RA (Router Advertisements)
 ipv6 nd suppress-ra
! No weird discovery proto, please.
 no vlan-dynamic-discovery
! IP address
 ip address 80.249.20X.Y
! No redirects
 no ip redirect
 no ipv6 redirect
! AMS-IX recommends 2 hour ARP timeouts
 ip arp-age 120
! For fast-ethernet: no autoconfig.
 speed-duplex 100-full

On a Foundry BigIron RX, software version < 2.4, we noticed together with a customer that his device had a very aggressive default setting for ICMPv6 ND queries for known MAC addresses. It retransmitted them every second. The retransmit interval can be altered in interface context as follows:

! Set the retransmit timer to 1 hour
 ipv6 nd ns-retransmit 3600

Note: This command should not be confused with ‘ipv6 nd ns-interval’, which applies to ND queries for unresolved MAC addresses.

8.1 Foundry/Brocade Aggregated Links

BigIron JetCore-based switches support link aggregation only on adjacent ports. The first port must be oddly numbered, and the other port must directly follow the first one. The same goes for any additional pairs of ports in an aggregated link.

On BigIron 15000 switches you cannot build trunks with ports on blade 8, or spanning ports on both sides of slot 8!

! Create an aggregate on a Jet-Core based switch
trunk server ethernet slot/port to slot/port+1

BigIron RX or NetIron MLX/XMR switches don’t have limits to port placement for aggregated links. Ports can be non-adjacent or even distributed over multiple blades. BigIron RX has a limit of 8 ports per aggregated link, NetIron MLX/XMR raise this to 16 in software 3.5.0, 32 in 3.8.0

! Create an aggregate on a RX/MLX/XMR switch
trunk ethe slot/port to slot/port ethe otherslot/otherport to otherslot/otherport

As of RX software release 2.5.0 and MLX/XMR software release 3.9.0 the link aggregation syntax changed. The configuration now looks like:

! Create a LAG on a RX/MLX/XMR switch
lag "<NAME HERE>" static
 ports ethernet #/# ethernet #/# <and so on>
 primary-port #/#

The primary-port is used as a single point of configuration. All configuration changes to the primary-port are propagated to the other ports in the lag group.

The keyword ‘static’ designates a standard aggregated link. For an LACP-enabled link, use:

! Create a dynamic LAG on a RX/MLX/XMR switch
lag "<NAME HERE>" dynamic
 ports ethernet #/# ethernet #/# <and so on>
 primary-port #/#
 lacp-timeout short

We recommend setting the LACP timeout to ‘short’ to reduce the service interruption time during photonic failovers.

8.2 Foundry/Brocade 10GE Specifics

Foundry/Brocade supports a feature called BGP Graceful Restart that, if all peers support it, will reduce the impact of prefix flaps but the CPU will still have to re-establish any flapped BGP session before the configured interval passes.The command delay-link-event can make the router ignore short link flaps (for example, in the case of a photonic switch swap). We recommend setting this to 20 which equals to 1000 msecs. Consequently, the flap will be logged in syslog, but higher level protocols (BGP in this case) will be unaffected. We suggest to leave fast-external-fallover in its default state.

9. HP Configuration Hints

Recommendations we received for HP ProCurve devices:

spanning-tree ifname bpdu-filter spanning-tree ifname tcn-guard lldp admin-status ifname disable

10. Juniper Configuration Hints

For Juniper routers, there isn’t much to disable. The Juniper Documents contain useful hints on how to set up your Juniper router.

CAUTION: IGMP Bug (PR/20343) in Junos OS versions 5.3R4 !

There’s a bug in Junos OS versions up to 5.3R4, that will cause a Juniper router to emit IGMP packets on all its interfaces, even when IGMP is disabled. The only way to stop your router from transmitting IGMP is to configure outgoing packet filters on your AMS-IX interface(s).

10.1 Unicast BGP Configuration

Make sure to exchange only unicast routes in the unicast ISP peering LAN by explicitly adding the following statement to ,em>all neighbors, groups and prefix-limits:

set family inet unicast

Be thorough with family inet unicast

If even one of the neighbours, groups or prefix-limits is defined with a family inet “any”, you’ll enable multicast and turn on MBGP.

Increasing interface hold-time (1200ms) to preserve BGP sessions during 10/100GE interface swapping

AMS-IX connects 10/100GE members via photonic switch (Glimmerglass), so we can redirect optic signal to our primary and backup switch in case of failure or for maintenance. The signal redirect takes around 20ms, enough to trigger port state change advertisement within the router; because of this, BGP sessions will be torn down as the result. Therefore, we recommend to configure a higher hold-time value on 10/100GE interface to preserve BGP sessions during interface swapping.

user@router# show interfaces xe-0/1/0
description "interface to AMS-IX Peering LAN";
hold-time up 1200 down 1200

10.2 IPv4 ARP Cache Timeout

Juniper’s default ARP cache timeout is 20 minutes (by comparison: Cisco’s default ARP cache timeout is 4 hours, which fits AMS-IX’s relatively static environment much better).

To reduce the amount of unnecessary broadcast traffic, we recommend setting the ARP cache timeout on Juniper routers to 4 hours. A recipe for this follows:

> configure
Entering configuration mode


you@juniper# edit system arp

[edit system arp]

you@juniper# set aging-timer 240

[edit system arp]

you@juniper# show | compare

[edit system arp]

+ aging-timer 240;

[edit system arp]

you@juniper# commit and-quit commit complete Exiting configuration mode

Since Junos 9.4 the ARP cache timeout is also configurable on an interface level:

[edit system arp aging-timer interface interface-name] aging-timer-minutes;

and on more recent versions of Junos that syntax has changed to:

[edit system arp interface interface-name] aging-timer aging-timer-minutes;

10.3 Juniper Aggregated Link

10.3.1 M-Series

We have encountered no issues with aggregated links and Jun OS (M40, M160, T320). Junos releases prior to 6.0 required VLAN tagging on aggregated interfaces. This limitation has since been removed. An example configuration follows:

niels@junix# show chassis
aggregated-devices {
  ethernet {
  device-count 1;


niels@junix# show interfaces ge-2/1/0 gigether-options { 802.3ad ae0; }


niels@junix# show interfaces ge-3/1/0 gigether-options { 802.3ad ae0; } —


niels@junix# show interfaces ae0 description “AMS-IX”; unit 0 { family inet { filter { input AMSIX-in; output AMSIX-out; } address 80.249.20x.y/21; } family inet6 { address 2001:07F8:1::A50a:bcde:1/64; } }

Additionally and optionally you can configure more granular load balancing:

routing-options {
  autonomous-system abcde;
  forwarding-table {
  export [ load-balance ];
policy-options {
  policy-statement load-balance {
  then {
  load-balance per-packet;
forwarding-options {
  hash-key {
  family inet {

In case that is not granular enough, you can modify the hash-key algorithm with some undocumented options in Junos OS 7.x and up:

hash-key {
  family inet {
  layer-3 {
  layer-4 {

Also, you can set your aggregated min-links to a value that will cause the bundle to drop in the event that your links can no longer support the amount of traffic you plan on shoving down the pipe. Thus, 2-port aggregated link, pushing 1.2 Gbps sustained across, drop bundle if n == 1;

aggregated-ether-options {
  minimum-links 2;
  link-speed 1g;

In a situation with load-balancing over multiple IP interfaces (not AMS-IX), the final statement will make traceroute more confusing to novices as packets may seem to ‘bounce’ between interfaces by also including TCP/UDP port numbers and ICMP checksums in the algorithm.On an IP1 load-balance per-packet really means per-packet; on an IP2 it actually works per flow, which is preferable.

10.4. Juniper 10GE Specifics

The link flap introduced by the PXCs make that you have to damp interface transitions. Junos supports a configurable hold-time . A good value would be 1200 ms.

arien@router# show interfaces xe-0/1/0
description " interface to AMS-IX Peering LAN";
hold-time up 1200 down 1200

Aggregated interfaces require hold timers on all physical interfaces and on the logical aggregated interface. Respectively xe-0/1/0 and ae0 in the example below:

arien@router# show interfaces xe-0/1/0
description "10GE LinkAgg #1";
hold-time up 1200 down 1200;
gigether-options {
   802.3ad ae0;
arien@router# show interfaces ae0
description "Aggregated interface to AMS-IX Peering LAN";
hold-time up 1200 down 1200;
aggregated-ether-options {
   minimum-links 1;
   link-speed 10g;
unit 0 {
   description "Aggregated interface to AMS-IX Peering LAN";
   bandwidth 20g;
   family inet {
       address 80.249.20x.y/21;

10.5 MTU Config

The configured MTU should be 1514 (this includes Ethernet headers but not the FCS), or 1518 when tagged.

11. Arista Configuration Hints

Recommendations we received for Arista routers.

11.1 Interface configuration

Configure the interface facing the Peering LAN as a routed port, disable IPv6 router advertisements and disable LLDP:

interface Ethernet1
description AMS-IX
no switchport
ip address ...
ipv6 address ...
ipv6 nd ra disabled
no lldp transmit

If you do decide to configure the port as a switched port with a VLAN-interface, make sure STP is disabled:

router(config-if-Vl1)#no spanning-tree

11.2 Configuration for 10GE/100GE ports

To ignore short link-flaps, configure the link-debounce setting:

router(config-if-Et1)#link-debounce time 1200

11.3 Link Aggregation

To create an LACP-bundle, configure the ports in a channel-group. This will create a virtual port-channel interface on which you configure the Peering LAN IP address and other settings:

interface Ethernet1
description AMS-IX port 1
channel-group 1 mode active
interface Ethernet2
description AMS-IX port 2
channel-group 1 mode active
interface Port-Channel1
description AMS-IX
ip address ...
ipv6 address ...

11.4 ARP aging timeout

The default ARP timeout on Arista is 4 hours, which is acceptable for the Peering LAN. Should you wish to change it, you can do so as follows:

router(config-if-Et1)#arp aging timeout

12. Linux Configuration Hints

We are not aware of any major issues with Linux boxes used as routers, and they seem to be pretty rare on the Exchange. Having said that, there are a few parameters that can (and usually should) be tuned:

  • ARP filtering & source routing
  • ARP cache timeout
  • Reverse Path (RP) filter

For more information on tuning your Linux system for routing, see the Linux Advanced Routing & Traffic Control HOWTO. NOTE: Please be aware while configuring sysctl parameters, that interface specific entries override global ones. For instance, proxy-arp will be enabled (which is undesirable) if both of these are set:

net.ipv4.conf.eth0.proxy_arp = 1
net.ipv4.conf.all.proxy_arp = 0

12.1 ARP Filtering and Source Routing

The Linux approach to IP addresses is that they belong to the system, not any single interface. As a result, Linux hosts have a default behaviour that is different from most other systems: interfaces semi-promiscuously answer for all IP addresses of all other interfaces. Example:

Ams Ix Config Guide Arp Filtering And Source Routing

In this example, host tuxco is a Linux box with a peering connection on eth0 ( and a backbone link on eth1 ( host kannix ( sends an ARP query for it will get a reply from tuxco’s eth0 interface!

In other words, a Linux host will answer to ARP queries coming in on any interface if the queried address is configured on any of its interfaces. The idea behind this is that an IP address belongs to the system, not just to a single interface. Although this may work well for server or desktop systems, it is not desirable behaviour in a router system. One reason is that it is a limited version of proxy-arp, which is forbidden on the AMS-IX peering LAN. Another reason is that two separate routers could potentially answer ARP queries for the same RFC1918 address.

12.1.1 Fixing ARP

The ARP behaviour can be fixed by using arp_ignore and arp_announce on the WAN interface:

tuxco# sysctl -w net.ipv4.conf.
tuxco# sysctl -w net.ipv4.conf.

12.1.2 Multiple Interfaces on One Subnet

If you have multiple interfaces on the same subnet, you may also want to enable arp_filter:

This prevents the ARP entry for an interface to fluctuate between two or more MAC addresses. However, you need to use source routing to make this work correctly. From the Documentation/networking/ip-sysctl-2.6.txt file in the kernel source:


arp_filter – BOOLEAN

1 – Allows you to have multiple network interfaces on the same subnet, and have the ARPs for each interface be answered based on whether or not the kernel would route a packet from the ARP’d IP out that interface (therefore you must use source based routing for this to work). In other words it allows control of which cards (usually 1) will respond to an arp request.


12.2. IPv4 ARP Cache Timeout

The ARP cache timeout on Linux-based routers should be changed from the default, especially if you have a large number of peers. This parameter can be tuned by setting the appropriate procfs variable through the*sysctl* interface. The Linux arp(7) manual says:



ARP supports a sysctl interface to configure parameters on a global or per-interface basis. The sysctls can be accessed by reading or writing the /proc/sys/net/ipv4/neigh/*/* files or with the *sysctl*(2) interface. Each interface in the system has its own directory in /proc/sys/net/ipv4/neigh/. The setting in the default directory is used for all newly created devices. Unless otherwise specified time related sysctls are specified in seconds.



Once a neighbour has been found, the entry is considered to be valid for at least a random value between base_reachable_time/2 and 3*base_reachable_time/2. An entry’s validity will be extended if it receives positive feedback from higher level protocols. Defaults to 30 seconds.

This means that Linux systems keep ARP entries in their cache for some time between 15 and 45 seconds (and yes, the average works out to 3 seconds). This is not very high. In fact, it is lower than the typical BGP keepalive interval and may thus result in excessive ARPs.

We suggest a timeout of at least two hours for ARP entries on your AMS-IX interface, so you’d have to set the base_reachable_time to 2 x 2hrs = 4 hours.

tuxco1# sysctl net.ipv4.neigh.ifname.base_reachable_time
net.ipv4.neigh.ifname.base_reachable_time = 30

The above command tells you that the ARP cache timeout is 30 seconds average. To change it so it’s between 2 and 6 hours, use the following command:

tuxco1# sysctl -w net.ipv4.neigh.ifname.base_reachable_time=14400
net.ipv4.neigh.ifname.base_reachable_time = 14400

Here ifname is the name of the interface that connects to AMS-IX. You can also use “default” here, but that may have undesired side-effects for your other interfaces.

12.3 IPv6 Neighbor Cache Timeout

As with the IPv4 ARP cache, Linux systems tend to set the lifetime of the IPv6 neighbor cache quite short as well. The lifetime is controlled in a similar way as for IPv4 ARP.

12.4 Proxy ARP

Disable proxy-arp using sysctl:

sysctl -w net.ipv4.conf..proxy_arp =
router# sysctl -w net.ipv4.conf.

12.5 IPv6 Autoconfiguration

IPv6 stateless autoconfiguration must be disabled:

router# sysctl -w net.ipv6.conf.
.autoconf=0net.ipv6.conf.ifname.autoconf = 0

12.6 RP Filter Setting

You may need to turn off the Reverse Path Filter (rp_filter) functionality on a Linux-based router to allow asymmetric routing, particularly on your WAN interface.To disable the RP filter:

tuxco1# sysctl -w net.ipv4.conf.
.rp_filter=0net.ipv4.conf.ifname.rp_filter = 0

12.7 Running the ‘sysctl’ Commands at Boot

The various system parameters discussed above can be set at boot time by adding it to a file such as /etc/sysctl.conf. The exact name, location and very existence of this file typically depends on the Linux distribution in use, but both Debian and Red Hat/Fedora use /etc/sysctl.conf:

# file: /etc/sysctl.conf
# These settings should be duplicated for all interfaces that are
# on a peering LAN.
### Typical stuff you really want on a router
# Fix the "promiscuous ARP" thing...
# Turn off RP filtering to allow asymmetric routing:
# Multiple (non-aggregated) interfaces on the same peering LAN.
### Keep the AMS-IX ARP Police happy. :-)

CAUTION: Modules must be loaded before sysctl is executed

On Debian systems, kernel modules for some network interfaces (e.g. 10GE cards) are not loaded before the init process executes the script thatruns the sysctl commands. In those cases, it is necessary to force the module to be loaded earlier. The same goes for the IPv6 settings; the ipv6 module is usually not loaded until the network interfaces are brought up, which is typically after the sysctl variables are set by the procps.sh script.(On Red Hat/Fedora systems no action needs to be taken; the /etc/init.d/network script automatically (re-)sets the sysctl variables before and after bringing up the interfaces.)There are a few ways around this:

On Debian-based systems, this can be done by creating a symbolic link in /etc/rc2.d to re-run procps.sh after the network is brought up:

root@tuxco# ln -s ../init.d/procps.sh /etc/rc2.d/S20procps.sh

12.8. Linux Aggregated Links

Enable bonding driver support in the kernel (CONFIG_BONDING=m)Edit /etc/modules to load the bonding driver on boot:

bonding miimon=100

The miimon parameter specifies the frequency for link-monitoring, measured in ms.Install the ifenslave package (apt-get install ifenslave). This package provides the /sbin/ifenslave tool, which is used to attach physical interfaces to the bonding interface.Add the bonding interface to /etc/network/interfaces:

# Ams-IX side
auto bond0
iface bond0 inet static
  address 80.249.20x.y
  post-up /sbin/ifenslave bond0 eth0 eth1

The above example creates a bonding interface with two physical interfaces.For more information see the file Documentation/networking/bonding.txt in the kernel source tree.

12.9 MLDv2

Modern kernels have MLDv2 on by default and there is no sysctl parameter to switch it off. The only known way by now is to drop it with an outgoing filter:

ip6tables -A OUTPUT -p icmpv6 --icmpv6-type 143 -j DROP

13. Mikrotik Configuration Hints

By default Mikrotik routers have their own proprietary Mikrotik Discovery Protocol and CDP enabled. To turn these discovery protocols off, in the Web UI go to IP > Neighbors > Discovery Interfaces and disable the protocols on the AMS-IX-facing interface.

14. Redback Configuration Hints

To configure link aggregation on Redback SMS routers you need to do the following.

!Create the link group interface and assign an IP address to it
[local]Redback(config)#context local
[local]Redback(config-ctx)#interface AMS-IX
[local]Redback(config-if)#ip address 80.249.20x.x/21
!Create the link group and bind it to its interface
[local]Redback(config)#link-group AMS-IX ether
[local]Redback(config-link-group)#bind interface AMS-IX local
!Configure an ethernet port and add it to the link group
[local]Redback(config-config)#port ethernet 1/1
[local]Redback(config-port)#no shutdown
[local]Redback(config-port)#link-group AMS-IX
!Configure another ethernet port and add it to the link group
[local]Redback(config-config)#port ethernet 1/2
[local]Redback(config-port)#no shutdown
[local]Redback(config-port)#link-group AMS-IX
!To match the AMS-IX arp timeout (4 hours) you need to configure this
under the interface
[local]Redback(config)#context local
[local]Redback(config-ctx)#int AMS-IX
[local]Redback(config-if)#ip arp timeout 14400
!Also, you can set your aggregated min-links to a value that will
cause the bundle to drop in the event that your links can no longer
support the amount of traffic you move trough the link-group.Thus, 2-
port aggregated link, pushing 1.2 Gbps sustained across, drop bundle
if n == 1;
[local]Redback(config)#link-group AMS-IX ether
[local]Redback(config-link-group)#minimum-links 2

15. Riverstone Configuration Hints

On Riverstone equipment, proxy ARP seems to be enabled by default, so you will need to disable it:

ip disable proxy-arp interface ifname

Here, ifname refers to your interface towards AMS-IX, or the string ‘all’

16. Acknowledgements

Various people contributed to this document. We received configuration info from AMS-IX and the following:

  • Aaron Weintraub (Cogent Communications)
  • Adam Davenport (Choopa)
  • Andree Toonk (SARA)
  • Andrew V. Zachinyaev (RIPN)
  • Bart Peirens (Belgacom)
  • Bas Haakman (Multikabel)
  • Ben Galliart (Steadfast Networks)
  • Blake Willis (Neo Telecoms)
  • Brad Dreisbach (NTT)
  • Daniel Roesen (ClueNet Project)
  • Edward Henigin (Giganews)
  • Elisa Jasinska (Limelight)
  • Erik Bos (XS4ALL)
  • Geraint Jones (Koding.com)
  • Greg Hankins (Force10)
  • Jesper Skriver (TDC)
  • Job Snijders (Snijders IT)
  • Jon Nistor (Rogers/TorIX)
  • Kevin Day (Your.org)
  • Lucas van Schouwen (Eweka)
  • Marcel ten Berg (Scarlet)
  • Mark Bergsma (Wikimedia Foundation)
  • Martijn Bakker (Support Net)
  • Martin Pels (Support Net)
  • Michiel Bool (Vodafone Netherlands)
  • Miquel van Smoorenburg (Cistron)
  • Najam Saquib (Mediaways)
  • Niels Raijer (Demon)
  • Paolo Moroni (SWISSCOM)
  • Pierfrancesco Caci (Telecom Italia Sparkle)
  • Rene Huizinga (UPC)
  • Richard A Steenbergen (nLayer)
  • Robert McKay (MCKAYCOM LTD)
  • Ronald Esveld (Equant)
  • Ruediger Volk (Deutsche Telekom)
  • Santi Mercado (SARENET)
  • Scott Madley (Level 3 Communications)
  • Simon Leinen (SWITCH)
  • Thijs Eilander (Cobweb)
  • Tom Scholl (SBC)
  • Vincent Bourgonjen (Open Peering)
  • Wolfgang Tremmel (DE-CIX)

Thanks to all those who contributed.

August 2022 Meeting Minutes

August 19, 2022 Ohio IX Meeting

Attendees:  Nancy Tiemeier, Luke Skidmore, Doug Payauys, Rob Shema, Brent Beatty, Matt Moran, Jason Gintert, Chris Cameron, and Greg Dunn

Associate Membership Application – City of West Jefferson – This was discussed and voted.  They were approved

Executive Positions for this next year

Chairman – Doug Payauys

Vice Chairman – Brent Beatty

Treasurer – Rob Shema

Secretary – Nancy Tiemeier

CTO – Jason Gintert

Will discuss moving the annual meeting back to May in the next meeting

Next meeting – September 16th at 9:00 at Cologix. 

Meeting adjourned.

Respectfully submitted,

Nancy Tiemeier